Accelerated Computation of Minimum Enclosing Balls by GPU Parallelization and Distance Filtering

نویسندگان

  • Linus Källberg
  • Thomas Larsson
چکیده

Minimum enclosing balls are used extensively to speed up multidimensional data processing in, e.g., machine learning, spatial databases, and computer graphics. We present a case study of several acceleration techniques that are applicable in enclosing ball algorithms based on repeated farthest-point queries. Parallel GPU solutions using CUDA are developed for both lowand high-dimensional cases. Furthermore, two different distance filtering heuristics are proposed aiming at reducing the cost of the farthest-point queries as much as possible by exploiting lower and upper distance bounds. Empirical tests show encouraging results. Compared to a sequential CPU version of the algorithm, the GPU parallelization runs up to 11 times faster. When applying the distance filtering techniques, further speedups are observed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)

Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...

متن کامل

Improvement and parallelization of Snort network intrusion detection mechanism using graphics processing unit

Nowadays, Network Intrusion Detection Systems (NIDS) are widely used to provide full security on computer networks. IDS are categorized into two primary types, including signature-based systems and anomaly-based systems. The former is more commonly used than the latter due to its lower error rate. The core of a signature-based IDS is the pattern matching. This process is inherently a computatio...

متن کامل

GPU-accelerated Hausdorff distance computation between dynamic deformable NURBS surfaces

We present a parallel GPU-accelerated algorithm for computing the directed Hausdorff distance from one NURBS surface to another, within a bound. We make use of axis-aligned bounding-box hierarchies that bound the NURBS surfaces to accelerate the computations. We dynamically construct as well as traverse the bounding-box hierarchies for the NURBS surfaces using operations that are optimized for ...

متن کامل

MPI- and CUDA- implementations of modal finite difference method for P-SV wave propagation modeling

Among different discretization approaches, Finite Difference Method (FDM) is widely used for acoustic and elastic full-wave form modeling. An inevitable deficit of the technique, however, is its sever requirement to computational resources. A promising solution is parallelization, where the problem is broken into several segments, and the calculations are distributed over different processors. ...

متن کامل

GPU-accelerated Gaussian clustering for fMPE discriminative training

The Graphics Processing Unit (GPU) has extended its applications from its original graphic rendering to more general scientific computation. Through massive parallelization, state-ofthe-art GPUs can deliver 200 billion floating-point operations per second (0.2 TFLOPS) on a single consumer-priced graphics card. This paper describes our attempt in leveraging GPUs for efficient HMM model training....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014